Martin Gardner was an American mathematics and science writer specializing in recreational mathematics, but with interests encompassing micromagic, stage magic, literature (especially the writings of Lewis Carroll), philosophy, scientific skepticism, and religion. He wrote the Mathematical Games column in Scientific American from 1956 to 1981, and published over 70 books.
Another of those "you know what you're getting" books -- and it strikes me that this could be a pop maths book today except that our computers have figured out a few bigger prime numbers. I'm not sure that a book of columns is a format I'm very fond of (one of the points of columns for me is that they're something you look forward to, some weeks apart). But *shrug* it's Martin Gardner. It's enjoyable.
Molto disuguale come libro. I due capitoli iniziali e quello finale sono davvero interessanti, anzi una esposizione unica di temi fislosofici, matematici e fisici sul tema del "tutto" e del "nulla", toccando la teoria dei numeri iperreali di Conway e il superspazio di Wheeler. Per il resto, è una raccolta mescolata senza criterio di temi vari, alcuni dei quali sono assai validi, come le strisce di Moebius, le stranezze dei fattoriali. Nel complesso vale la pena.
Recolección de pasatiempos de Martin Gardner para el Scientific American. Algunos son no buenos, buenísimos, y daban para meterse muy a fondo en cuestiones matemáticas aparentemente intrascendentes al principio. Son para hacerlos con tiempo, pero merecen muchísimo la pena. En la introducción dice que este volumen es la octava recopilación de pasatiempos. Creo que yo solo leí dos o tres (no sé cuántos tradujo Alianza al español).
I feel this is quite brilliant and fascinating, though most of it is way over my head! I've browsed more than read and would perhaps fare better with a math-minded guide to demonstrate and explain. I do imagine how wonderful it is to see numbers as patterns that connect in amazing ways. Inspiring.
Quite a fun read. I shouldn't be surprised that I learned new and interesting things from a Martin Gardner book. Perhaps I should proceed to look for more.
My favorite chapter might have been chapter 5, "The Cocktail Cherry and Other Problems". Examples: 2) what is the largest cube that can be completely covered on all six sides by folding around it a pattern cut from a square sheet of paper with a side of three inches? 3) tri-hex, a generalization of tic-tac-toe to other arrangements of 9 cells in 5ines of 3. By Thomas H. O'Beirne of Glasgow. 6) langford's problem: 312132 has the property that there are 1 digits between the 1s, 2 digits between the 2s, and 3 digits between the 3s. This is the unique solution. There is also a unique solution if you include 4. No solutions for 5 or 6 (instead of 3), but 26 solutions with 7.
Эта книга начинается главой, которая посвящена размышлениям на тему, что такое "ничто", а заканчивается главой про то, что же такой "все". Ради этих глав и стоит читать книгу. Середина довольно-таки скучновата, относительно других книг Гарднера, поскольку довольно-таки однообразно и в основном посвящена вопросам комбинаторики и всевозможных полимино, а это на мой взгляд, не самые занимательные темы в занимательной математике. Но читать нужно обязательно всю книгу, тогда станет понятнее, что же такое "ничто" и что же такое "все". А может и не станет. Но это самое лучшее популярное рассуждение на указанные темы, которое мне доводилось читать. Да, собственно и единственное такое рассуждение.