What do Bach's compositions, Rubik's Cube, the way we choose our mates, and the physics of subatomic particles have in common? All are governed by the laws of symmetry, which elegantly unify scientific and artistic principles. Yet the mathematical language of symmetry-known as group theory-did not emerge from the study of symmetry at all, but from an equation that couldn't be solved.
For thousands of years mathematicians solved progressively more difficult algebraic equations, until they encountered the quintic equation, which resisted solution for three centuries. Working independently, two great prodigies ultimately proved that the quintic cannot be solved by a simple formula. These geniuses, a Norwegian named Niels Henrik Abel and a romantic Frenchman named Évariste Galois, both died tragically young. Their incredible labor, however, produced the origins of group theory.
The first extensive, popular account of the mathematics of symmetry and order, The Equation That Couldn't Be Solved is told not through abstract formulas but in a beautifully written and dramatic account of the lives and work of some of the greatest and most intriguing mathematicians in history.
This book brought back some of the more fascinating things I learned in my upper division/graduate classes on group theory. It is approachable, yet I'm sure challenging to those without a mathematics background. I love thinking about the way-too-short lives of those brilliant mathematicians who invented group theory - the political and social environments at the time were rough, and what they accomplished was amazing. And symmetry is applicable to so many areas - it is a fascinating topic.
Được giới thiệu cuốn sách này từ lâu trước khi cầm trên tay và đọc bản thảo tiếng Việt, tôi đã cười thầm khi người giới thiệu cuốn sách nói về nó :"Đây là một trong những tài liệu đầy đủ và sâu sắc nhất về Galois, cậu biết chưa ?" Trước đó, cái tên Mario Livio đã mang đến cho tôi đủ thất vọng với "Chúa trời có phải là nhà toán học", ngoài ra, chuyện đối xứng và lịch sử việc giải các phương trình đối với tôi, từ lâu đã không còn là vấn đề xa lạ. Hơn thế, tôi vẫn vỗ ngực là mình có nhiều và đủ hiểu biết về Galois, mà Mario Livo lại là dân vật lý. Chính vì thế nó không thể khiến cho tôi có một cái nhìn, dù chỉ là thoáng qua. Nhưng đó có lẽ là một sai lầm. Tôi đã có cảm giác ấy khi nhìn vào lời nói đầu. Nào là Freeman Dyson, Steven Weinberg, nào là Edward Witten, Joseph Rotman, Sir Micheal Atiyah... Một loạt những nhà toán học tinh hoa mà tôi luôn ngưỡng mộ. Thực sự đáng tò mò. Mario Livio bắt đầu từ cội nguồn của đối xứng, một tính chất đẹp đẽ nhất của khoa học và tự nhiên. Đối xứng được giới thiệu từ những gì gần gũi nhất, trong ngôn ngữ, thơ ca, nhạc của Bach, và tranh của Escher... Đối xứng cũng được đưa ra dưới khía cạnh sinh học, tâm lý, và tôi cho rằng đây là một bước tiến của Mario Livio so với những tác giả khác. Từ đó, Toán học bước chân vào cuốn sách một cách tự nhiên. Đối xứng được định nghĩa lại, thông qua ngôn ngữ nhóm, và lịch sử của đại số và việc giải các phương trình đa thức xuất hiện. Mario Livio đã vẽ lại hoàn hảo bức tranh của thời trung cổ, với mối quan hệ phức tạp giữa Ferro, Tartaglia, Cardano và Ferarri, hơn thế ông còn đi sâu phân tích chúng để tìm ra lời giải cụ thể cho bài toán : Ai là tác giả của công thức nghiệm của phương trình bậc ba, điều mà không một cuốn sách giáo khoa toán từ phổ thông cho đến đại học nào trên thế giới làm được. Tất cả những vấn đề, câu chuyện trên chỉ là màn mở đầu cho cốt lõi cuốn sách: Về phương trình không giải được. Lagrange, Ruffini là những nhà toán học được nhắc đến đầu tiên, xen kẽ giữa những câu chuyện bên lề về định lý cơ bản của đại số, về sự vô tâm(ích kỷ) của Cauchy( điều mà chúng ta sẽ còn gặp lại)... Kể từ đây, cùng với sự xuất hiện của 2 thiên tài N.Abel và E.Galois, đại số bước sang trang mới, và cuốn sách cho thấy những gì là giá trị nhất của mình: "Thực tế thì thiên tài của Abel và Galois chỉ có thể so được với các siêu sao mới-một ngôi sao bùng nổ ngắn ngủi nhưng rực sáng hơn hết thảy mọi ngôi sao trong thiên hà của nó". Mario Livio cho thấy công phu tìm tòi khi ông đưa ra từ câu chuyện gia đình cho đến các thư từ, các đánh giá, nhận định về công trình của Abel. Nổi bật lên trên những việc khách quan ấy là thiên tài của Abel giữa cuộc sống nghèo khổ và dằn vặt. Cuốn sách tiếp tục với câu chuyện về "nhà toán học lãng mạn" Galois, một trong những phần tiểu sử đầy đủ nhất mà bạn sẽ không thể tìm thấy ở đâu khác. Tác giả đã xây dựng lại câu chuyện một cách khách quan nhất, và đề cập một giả thuyết mới cho cái chết của Galois : Ernest Armand Duchatelet phù hợp hơn là người vẫn thường được nhắc đến Pescheux d'Herbinville, trong vai trò người thách đấu súng. Trong nỗ lực đi tìm sự thật cho bí ẩn đã tồn tại gần hai thế kỷ, Mario Livio đã cất công xem lại cả bản báo cáo khám nghiệm tử thi của Galois. Tôi thực sự khâm phục ông, điều mà ông làm lẽ ra nên được các hiệp hội toán học, hay chí ít các nhà toán học làm từ rất, rất lâu rồi. Ngay sau đó là phần giới thiệu về lý thuyết nhóm và tác giả đã cố gắng chỉ ra "chứng minh xuất sắc của Galois" chỉ bằng ngôn từ. Cám ơn ông vì điều đó, và tôi mong rằng những người làm toán nửa mùa, những phóng viên lều báo, những dịch giả của những cuốn sách rẻ tiền, làm ơn tìm đọc những bài viết thế này, để hiểu hơn và xin đừng lôi câu chuyện của Galois ra nói, như một "scandal toán học". Có lẽ Mario Livio muốn có một "đối xứng thực sự" khi chiều ngang còn lại của cuốn sách ông đề cập đến ứng dụng của lý thuyết nhóm, đối xứng trong vật lý, âm nhạc và sinh học. Đi cùng với những tính chất đẹp đẽ của đối xứng trong thuyết tương đối, thế giới lượng tử là các câu chuyện lịch sử về Noether, Klein, Lie, về bài toán phân loại nhóm... Cho đến tận phút cuối cùng, Mario Livio vẫn khiến cho tôi bất ngờ, về các ghi chép của Sophie German về cá tính của Galois, về biên bản khám nghiệm bộ não của anh. Tôi không còn biết dùng từ nào để có thể mô tả cảm xúc của tôi đối với cuốn sách của ông. Chỉ có một điều đáng phàn nàn duy nhất, mà tôi cho là ông Mario Livio hơi ôm đồm, đó là việc mô tả đối xứng trong sinh học trong ấy có dẫn đến nhiều ví dụ ngoài học thuật, thậm chí khá thô thiển so với vẻ đẹp và chiều sâu của cuốn sách. Riêng với bản dịch tiếng Việt, tôi cho rằng đây là một bản dịch chất lượng của dịch giả Phạm Văn Thiều, đặc biệt là sự khéo léo của ông trong việc chọn tên "Ngôn ngữ của đối xứng". Theo quan điểm cá nhân tôi, cuốn sách này nên được phát kèm, hoặc recommend cho sinh viên trong bất kỳ một khóa học nào về lý thuyết Galois, ngày nay đã trở thành một môn học cơ bản dành cho sinh viên ngành toán/lý.
This is a book about a genius. Livio quotes George Bernard Shaw early and appropriately to describe Abel and Galois: “The reasonable man adapts himself to the world; the unreasonable one persists in trying to adapt the world to himself. Therefore all progress depends on the unreasonable man.” (3) It is a very, very true statement.
Livio traces the development in mathematics over the broad strokes of history. It is a history of brilliant minds solving progressively more difficult algebraic equations. With the quintic equations, however, no solution could be found for over 300 years. Abel and Galois came at the problem from a completely different line of thinking, and their revolution which has come to manifest itself in modern group theory changed the way we understand the world. Ultimately, they came to define the properties of a group as: 1. Closure – “The offspring of any two members combined by the operation must itself be a member.” 2. Associativity – “when combining (by the operation) three ordered members, you may combine any two of the first, and the result is the same, unaffected by the way they are bracketed.” 3. Identity element – “The group has to contain an identity element such that when combined with any member, it leaves the member unchanged.” 4. Inverse – “For every member in the group there must exist an inverse. When a member is combined with its inverse, it gives the identity element.” (46)
Livio goes on to explore the line of thinking further. At times he’s a bit breathless: “So, how did Galois prove his inventive propositions? Even just the essence of Galois’s proof is somewhat technical, but it provides such a unique window into his unsurpassed creativity that it is definitely worth the effort required to penetrate it. Following the logical steps of the proof is like having walked through the labyrinth of Mozart’s mind while he composed one of his symphonies.” (169)
“Before Galois, equations were always classified only by their degree: quadratic, cubic, quantic, and so on. Galois discovered that symmetry was a more important characteristic. Classifying equations by their degree is analogous to grouping the wooden building blocks in a toy box according to their sizes. Galois’s classification by symmetry properties is equivalent to the realization that the shape of the blocks – round, square, or triangular – is more fundamental.” (170)
Livio completes his overview by talking about the modern uses of this mathematical approach. To me the most interesting is that of Einstein: “Suspicious at first…Einstein slowly began to grasp the incredible power of symmetry. If the laws of nature are to remain unchanged for moving observers, not only do the equations describing these laws need to obey Lorentz covariance, the laws themselves may actually be deduced from the requirement of symmetry. This profound realization has literally reversed theological process that Einstein (and many of the physicists who followed him) employed to formulate the laws of nature.” (204)
Livio quotes Owen Meredith (pseudonym of Edward Robert Bulwer-Lytton, earl of Lytton) ultimately in describing how important thinkers like Abel and Galois are in our world. “Genius does what it must, and Talent does what it can.” (263) He finishes with a quick analysis of how these mathematicians are able to be so innovative. “Psychologists John Dacey and Kathleen Lennon emphasize tolerance of ambiguity – the ability to think, operate, and remain open-minded in situations where the rules are unclear, where there are no guidelines, or where the usual support systems have collapsed. Indeed, without the competence to function where there are no rules, Picasso would have never invented cubism and Galois would not have come up with group theory. Tolerance of ambiguity is a necessary condition for creativity.” (265) This conclusion is applicable to all of us.
it is written about symmetry and group theory. they had made impressive upon the human being from math. . There are lots of games coming from symmetry. ex. tetris https://en.wikipedia.org/wiki/Tetris
I have a BA in physics, and even though this book is not a physics book, I learned just how much I didn't learn in my degree and how awful my teachers were. Livio obviously doesn't go into equations and mathematical derivations, but instead explains the reasoning behind them and how different branches of physics are actually connected (something they don't bother teaching you).
Rather dense in the quality of its content, it’s also incredibly knowledgeable and thought inducing. It narrates the historical chronicles of brilliant minds attempting to solve increasingly difficult algebraic equations (first to fourth degree). When it came to quintic however, no solution could be found for over three centuries. That is, until two gifted mathematicians (Abel and Galois) approached the problem from an entirely different angle, where rather than asking whether an equation is solvable or not by simply trying to solve it, they examined permutations of the putative solutions (Galois). In a nutshell, Galois’ proof showed that every equation has its own “symmetry profile” - a group of permutations. This is now known as the Galois group. He also introduced the concept of a subgroup as the second ingredient to his proof, ultimately leading to the third and final step: “The condition for an equation to be solvable by formula is that its Galois group should be solvable.” Not only did this proof demonstrate that the quintic is unsolvable by radicals (solving the equation that couldn’t be solved) but by way of his proofs, Galois develops Group Theory, precicely the tool that is used to determine symmetry. The book thoroughly explains this concept of symmetry, it’s relation to geometry (every geometry is defined by its symmetries - the object it leaves unchanged i.e. the object has an invariance under the transformation), and its importance/essence in deciphering nature’s design all the way to its very core (quantum mechanics and string theory).
It explains why humanities attempts to understand gravity and to unify all basic forces of nature, have elevated the significance of symmetry principles to a yet higher level - symmetry has become the source of forces.
In short; There exists symmetry (covariance) in Einstein's special relativity equations. Einstein’s relativity puts the symmetry first. Symmetry originates the forces. The equivalence principle - the expectation that all observers, irrespective of their motions, would deduce the same laws - requires the existence of gravity. The gauge symmetries - the fact that the laws do not distinguish color, or electrons from neutrinos - dictate the existence of the messengers of the strong and electro-weak forces. Supersymmetry - that every known particle in the universe must have an as-yet-undiscovered partner.
The equation for the standard model of physics thus boils down to this fundamental concept of symmetry…
An excellent book detailing the attempt to solve, algebraically, equations of degree 5 or higher. It explores the life/efforts of a number of mathematicians that worked tirelessly on this attempt. There is almost no math in the book--probably a good thing since the book's audience is not assumed to have that experience.
Reading the story, I found myself wishing I had taken a Group Theory class in my college Mathematics degree. But to Livio's credit, he explains the basics of Group Theory effectively and thoroughly enough to appreciate the importance and magnitude of what was accomplished by the mathematicians.
As a minor side note, Livio is a physicist writing math books (I have read another of his math books and found the same thing), and Livio applies the math to physics since physics is his first focus.
Livio's writing style is clear, effective, fluid, and a straightforward read. The material is compelling and detailed enough to create a very good, exciting narrative to easily engage the reader.
This book is a comprehensive introduction to a very hard problem of mathematics : finding the general solution for a general equation, along with the story of two genius Niels Hendrik Abel and especially Evarist Galois. In my opinion, the author has spent much time to collect the documents related to Galois's life, so that he has described Galois's story truthfully in a very scientific way. That makes sense for the other books on Galois or the same topics always tried to describes Galois's story as much fictonal as possible. The language of symmetry is also a major topic of this book, and Mario Livio has developed them as the vertical axis of the whole story. So that physics came in, with applications of group theory in the unifying question for the universe.
In some last pages, the appearance of the applications of symmetry in biology and sex(which I do think that it is not appropriate) reduce the value of this book, and it made me unable to appreciate the book more.
Whoever wrote the copy for the jacket of this book should get a raise. The jacket makes you think the book will be really interesting, and instead it's more of a history of how certain mathematical equations finally were solved, the people who solved them, and how symmetry became an important part of mathematics. The first half of the book was VERY slow, and it wasn't until the author started actually talking about the "key" mathematicians and their life stories that it became interesting. Perhaps a good read for people interested in the history of the quadratic equation, etc., but not anywhere near as fascinatingly gripping as the cover would have you believe.
This was definitely more readable than most of the books about math I have read. There was plenty in it that I didn't understand, but it didn't take away from the point of the book. Any mathematician who gets killed in a duel over a girl at age 20 after spending a year in prison for revolutionary activities is worth reading about...especially if he made a discovery that revolutionized mathematics.
The history of math parts were really interesting.
The exposition of Galois theory left a lot to be desired. It might be too complex for a lay book, but there's a lot about symmetry and physics that's presented at the level of "trust me, it works this way"!
The evolutionary bio bits were even worse.
I bet Ian Stewart's book on symmetry is better, but I'm all symmetried out for now.
The author is at pains to avoid actually presenting any of the mathematics. The subject is good. The storytelling is reasonably paced. But Livio just refuses to show us any of the actual subject matter. It is maddening.
An insightful and emotional narration of the life of two misfortunate geniuses, Henrik Abel and Évariste Galois, both of whom tackled the pressing math puzzle of their time: how to find the solution of the general fifth order polynomial equation. It's hard to imagine that 200 years ago, the Norwegian well-fare state was non-existent and a brilliant mind like Abel was left to die sick and poor. On the other hand, growing up in the aftermath of the French revolution, Galois was a maverick who took on the establishment, both in mathematics and in politics, and in the process made a revolution of his own, by leaving and indelible mark on group theory and opening entire fields of study in algebra before his 21st birthday.
A well-written pop-sci book, well worth the time. I’ll dock half a star for poor editing (the story is all over the place) and half a star for starry-eyed string-mongering.
I really, really wanted to be able to give this four stars, but it kind-of loses the plot part-way through. Great historical information on symmetry and clearly the author is passionate and well-researched, but, as a book, it just felt a bit disjointed.
Perhaps if you approached it like you were going to take an entire semester to learn the topic (and were willing to do some outside research or pause for a while between chapters to try and apply some of the knowledge), it might be a better read, but that’s a somewhat particular method.
Overall, I give it 3.5 stars for being very interesting and summarizing quite a bit from one particular perspective, which is very interesting, and for humanizing a few very clever individuals who died young, but not without making great contributions. These are noble things for a book to do, so if the topic interests you, check it out, you’ll probably enjoy many parts of it.
This has got to be the geekiest book I've read in a long time. It's all about math, for goodness sake. How do you stay awake through a book on math? Well, the duel, and the murder mystery, and the tragic poverty, and the backstabbing, and the mental illness all helped.
Because it's not really a book about math, it's a book about mathematicians. Very different subject, really. There is the baffling tale, which I'm still not certain if I believe, that in 1500's Venice, mathematicians would face off to see who could solve the most fifth-degree equations in the least time. Crowds showed up to watch this, and to make wagers on the outcome. I say we dress Lee and Phil in high Renaissance garb and make them do this in public.
Then there is Niels Henrik Abel, who live a poverty-stricken life, narrowly missing numerous opportunities to find a position that would provide him enough of an income to allow him to marry his long-suffering fiancee. Unfortunately, his results were ahead of their time, and therefore misunderstood (or simply not understood), and he ended up dying of "consumption" (tuberculosis) at the age of 25. His deathbed wish to a friend was to see that his fiancee was taken care of; his friend married her.
The main figure is Evariste Galois, who the author has clearly become fascinated with. The fellow was a French revolutionary, put on trial as a teenager for having threatened the life of the King in public, who died under mysterious circumstances (involving a duel with an unknown opponent) at age 20. He apparently knew he would lose the duel; he spent the night before furiously scribbling out a few letters to his friends, and above all fleshing out his mathematical legacy, which was to become the foundation of group theory.
From there, we move on to group theory, seeing how the methods of inverting or turning a pair of trousers can be mathematically identical to certain manipulations of Venn diagrams, and the marriage taboos of the Kariera, a tribe of Australian Aboriginals. Those wacky mathematicians. Livio is good at finding examples of abstract math that are goofy enough to keep the reader's interest.
In fact, though, the writing of a book on symmetry in mathematics was obviously hijacked midway through by the writer's interest in Galois; the last chapter is "Requiem for a Romantic Genius". Which is either a shame or a relief, depending on your opinion. It worked for me.
while this book has much more of a uniting scientific idea than the other livio i read (“brilliant blunders”), it’s actually much more scattered. is it a “big idea” book, or a biography of galois? why are there random throwaway chapters on evolution and music? there are absolutely some interesting ideas here - i would very much like to read a top-notch book about symmetry - but it mostly fails as a work of popular science writing.
This book was a gift and I did not understand what I was about to read when I started it. It was not what I expected - a discussion of symmetry in nature. Instead, it was a history of symmetry, which heavy emphasis on the lives and theories of the mathematicians who perfected the theory. Written for a general audience, I struggled through some of the more challenging parts, but "click" of comprehension occurred when I resumed this book as it began a discussion on super string theory. Having just finished The Little Book of String Theory, I was prepared for the presentation of the material and the information seemed to fall into place. I love it when that happens.
The math book club at my university chose it. (Yes, such a thing exists, and I am a part of it.) I really enjoyed it. It touched on the history of maths, its wide-ranging applications, and took you on an amazing journey. It let you discover mathematics across thousands of years. It started off with the simplest of equations and left you with Galois and group theory. Symmetry was beautifully interwoven into every chapter of the book. That book made me rethink my choice to concentrate in statistics. If I do not get to take group theory, I may as well challenge myself to learn it independently on my own.
Tough but fascinating read, leading off into countless tangential area of study. Will start reread immediately. Until reading this I never realized there can't be any general solution to 5th order equations (involving the coefficients and the operations of +,-,×,÷ and root.) How that was proven required in invention of an entirely new field of mathematics, group theory, which was used to advance broad areas of physics and other fields.
This was the first book I read about symmetry and its related mathematical topic, group theory, and it is excellent.
This book takes the same approach as many other similar books, focusing on the history (tragic in the case of Galois and Abel) and personalities, rather than the details of the mathematics.
A truly remarkable book. It manages to convey the beauty of the mathematics while simultaneously telling a compelling story. One of the best books I've ever read. Honestly, my words just don't do it justice. I highly, highly recommend this book to anyone even if math isn't necessarily your cup of tea.
I really enjoyed reading this -- it's a bit scattershot, but in the way you can have a wide-ranging conversation with some stranger at a party and feel that the evening was well spent.
Slow and dry at first. But it really picked up. It was a biography of the guy who came up with set theory. Now the physicists use it to explain the natural world.
L’intento del libro è quello di trovare nella simmetria e nella teoria dei gruppi una sorta di teoria del tutto. Ho apprezzato la parte storica, con le digressioni sulla descrizione della vita di Abel, Galois e altri protagonisti, per inclinazione mia propria, meno i capitoli in cui passa alla fisica (per ignoranza mia) che ho trovato complessi nel loro sforzo riduttivo e i capitoli sulla biologia e psicologia, che ho trovato forzati. Comunque un buon libro. Condivido il pensiero di chi ha detto che con 100 pagine in meno il libro sarebbe stato molto più godibile.
CAP. 1. Simmetrie, spiega cosa si intenda per simmetria e come essa pervada il mondo sensibile. CAP. 2 simmetrie nell’occhio della mente, su come la mente le percepisca e su come l’occhio le preferisca. Sguardo tra scienza, arte e psicologia percettiva. Il linguaggio delle simmetrie come nocciolo duro delle forme, delle leggi e degli oggetti matematici che sottoposti a trasformazione rimangono invarianti. Definizione di gruppo. CAP 3. Non dimenticatevi mai di questo nel mezzo delle vostre equazioni, breve storia dell’algebra , Diofanto brahmagupta, al-Khwarizmi. Eq. Terzo grado, Scipione dal ferro, Luca Pacioli, Antonio MARIA Fiore, Niccolò tartaglia . La disputa Cardano - Tartaglia. Ludovico Ferrari. Bombelli e i numeri immaginari, -Viete, Eulero, Gauss e il teorema fondamentale dell’algebra, Ruffini e la non risolubilità dell’equazione di quinto grado con una formula di radicali, e la sua mancata considerazione nonostante l’apprezzamento di cauchy. Invece di portare avanti il tentativo di risoluzione cambiò direzione e cercò di dimostrarne l’impossibilità, portò un passo avanti le relazioni tra le soluzioni delle equazioni cubiche e quarti che e certe permutazioni. Verso l’algebra astratta. CAP. 4. Il matematico povero, Storia di Abel e della sua sfortunata vita. Dimostrazione della impossibilità di risolvere una equazione di quinto grado con una formula che contenga solo operazioni semplici. Teorema di Abel, perdita dei suoi manoscritti da parte di Cauchy e morte in povertà. CAP. 5, il matematico romantico, Storia di Galois e della sua breve vita, teoria dei gruppi, teoria di Galois e proprietà di simmetria di un’equazione, rifiuto all’ ecole polytechnique, ecole normale, partecipazione alla rivoluzione, duello finale. CAP. 6, I gruppi, permutazione e inversioni, gruppi e permutazioni. Teoria dei gruppi come lingua ufficiale di tutte le simmetrie. Astrazione che dà la trasferibilità delle strutture matematiche. il successore di Galois Cayley e il suo teorema. Felix Kleine: la geometria è la teoria dei gruppi. (Geometrie non euclidee). Programma di Erlangen. CAP. 7, Le regole della simmetria. Lo spazio-tempo e Einstein, il principio di equivalenza, relatività generale e relatività stretta. Meccanica quantistica, quark e altre particelle, Sophus Lie e i gruppi di Lie. La teoria delle stringhe. Supersimmetria. CAP. 8, Chi è il più simmetrico? Simmetria nel mondo animale e influenza nella scelta del partner, simmetria nella musica. La guerra dei trent’anni (classificazione dei gruppi) Michael Aschbacher. CAP. 9, Requiem per un genio romantico, i segreti di una mente creativa.
This entire review has been hidden because of spoilers.